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Abstract

The maximum operational range of continuous variable quantum key distribution protocols has
shown to be improved by employing high-efficiency forward error correction codes. Typically, the
secret key rate model for such protocols is modified to account for the non-zero word error rate of
such codes. In this paper, we demonstrate that this model is incorrect: firstly, we show by example that
fixed-rate error correction codes, as currently defined, can exhibit efficiencies greater than unity.
Secondly, we show that using this secret key model combined with greater than unity efficiency codes,
implies that it is possible to achieve a positive secret key over an entanglement breaking channel—an
impossible scenario. We then consider the secret key model from a post-selection perspective, and
examine the implications for key rate if we constrain the forward error correction codes to operate at
low word error rates.

Introduction

Quantum key distribution is one of the most advanced applications of quantum physics and information
science. It enables the distribution of information-theoretically secure random key material between two parties
in spatially separated locations connected by an unsecured optical link [1].

There are two complementary approaches to quantum key distribution: discrete variable quantum key
distribution uses single-photon or weak coherent states and single photon detectors [2], while continuous
variable quantum key distribution (CVQKD) uses coherent or squeezed states of light and homodyne detectors
[3]. Both discrete and continuous quantum key distribution systems have been demonstrated (for a review see
[4]) and importantly both the discrete and continuous approaches to quantum key distribution have been
proven to be information-theoretic secure, the latter against collective attacks [5, 6] and with composable
security [7].

CVQKD has gained interest recently because of the potential technology advantages it offers that may enable
higher secret key rates. Technological advantages include high-quantum efficiency homodyne detectors; high-
speed commercial-off-the-shelf optical components and compatibility with optical network infrastructure.

Originally limited to short distances [8], the operation range of CVQKD protocols was considerably
extended by employing the reverse reconciliation protocol that exploits one-way communication, including
forward error correction codes in the error reconciliation post processing step [9]. Low density party check
(LDPC) and multi-edge LDPC (ME-LDPC) codes are examples of high-efficiency forward error correction
codes that have been employed in CVQKD systems [10—15]. The ME-LDPC codes in particular exhibit good
error correction performances at low signal-to-noise (SNR) ratios, making them suitable for CVQKD
applications.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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A simple and useful model for the secret key rate of CVQKD protocols in the case of collective attacks can
derived when one assumes a specific reconciliation procedure. Specifying the reconciliation procedure to be
forward error reconciliation, the secret key rate can then be empirically modeled by [16]

Al = g — Iy, (1)

where I denotes the bound on an eavesdropper’s (Eve’s) maximum accessible information, Iyg denotes the
capacity of the channel between the sender (Alice) and the receiver (Bob), and 3 denotes the efficiency of
reconciliation.

The model for the secret key rate in equation (1) is commonly used in the literature to compare the
performance of CVQKD protocols under varying conditions, for example, different amounts of loss and noise.
Importantly, equation (1) assumes that that every codeword of the forward error correction code is decoded
correctly.

Practical applications of ME-LDPC and LDPC codes inherently exhibit a non-zero word error rate (WER)
[10, 17]. The WER is the rate at which the decoder fails to decode the correct codewords. Since the adoption of
forward error correction codes in CVQKD systems, the model of the secret key rate has been subsequently
modified to include the efficiency and WER of the code [10, 15]

Al = (Blap — &)1 — pey)» )

where pg,; is the rate at which the decoder fails to decode to a valid codeword. We point out that it is not clear if
this secret key model was formally derived. We also note that for all error correction schemes there is always a
non-zero probability that a valid, but incorrect, codeword could be returned. Le. the decoder will fail but will not
know that it has failed. This would not be detected by Alice and Bob, resulting in an incorrect secret key which
would not be discovered until the key is used. In our simulations, we have used the true word error rate (as we
have knowledge of the transmitted message so can detect all failures). In practice, this will not be possible,
however it it usually assumed that the undetected error rate is negligible.

In this paper we show that the current key model equation (2) is incorrect. Firstly, we demonstrate that fixed-
rate error correction codes can exhibit efficiencies, J greater than unity for a range of word error rates. Secondly,
we show that by using the secret key model equation (2) combined with (3 greater than unity, it is possible to
achieve a positive secret key over an entanglement breaking channel. We then consider the secret key model
from a CVQKD post-selection perspective, and also examine the implications for key rate if we constrain the
forward error correction codes to operate at low word error rates.

Forward error correction codes with 3 greater than unity

Since the adoption of forward error correction codes in CVQKD protocols, the model for secret key rate has
been formulated to account for the non-ideal performance of the forward error correction coding scheme. The
two sources of this non-ideal performance are (1) the losses due to mapping a binary error correction code onto
a Gaussian-input channel, and (2) the losses due to the performance of a practical error correction code
compared to the ideal, capacity achieving, error correction code.

It has been shown [18] that entanglement-based CVQKD protocols are equivalent to so-called prepare-and-
measure CVQKD protocols where Alice transmits Gaussian modulated coherent states. In the latter case, if the
sender encodes with Gaussian signals, a mapping protocol can be used to transform the Gaussian symbols to
binary symbols for subsequent error correction. Recent advances have been made on efficient mapping
protocols (for example see [19] and references therein), which have been shown to be highly efficient for low
SNR ratios, typically required for CVQKD protocols [19]. We denote the efficiency of the mapping protocol,
compared to perfect Gaussian mapping by Byap. This mapping efficiency, although important, is not the focus
of this paper.

Following the mapping step, reconciliation is then performed using an error correction code designed for
the binary-input additive Gaussian white noise (BI-AWGN) channel, in particular LDPC[10, 11] and ME-LDPC
codes[12-15].

The efficiency of the forward error correction code is calculated according to [10, 13, 16]

R
Brec = —, (3)
Isn
where R = k/nis the rate of the error correction code that maps a k bit message to an n bit codeword, and I5p
denotes the capacity of the channel between the sender (Alice) and the receiver (Bob), i.e. the rate of the ideal
capacity-achieving code. The total efficiency of the reconciliation scheme is then

B = Bmar Brec. 4
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In the remainder of this paper we will assume that Sysp = 1. Substituting equation (3) into equation (2) we
see that the key rate for arate R = k/n forward error correction code operating at a WER of py,; can be calculated
as

Al = (R — Ip)(1 — pgy)- ©)

For LDPC and ME-LDPC codes, the code performance at a given SNR (where the SNR is determined by the
parameters of the CVQKD protocol model) can be determined theoretically by evaluating the expected
performance of an ensemble of infinite length codes with a particular structure using density evolution [20].
Density evolution returns the threshold of a rate R code ensemble, which is the smallest SNR at which the BER,
the fraction of codeword bits remaining in error following decoding, goes to zero as decoding proceeds. For a
given SNR, we find the highest code rate R with a threshold at or below that SNR. Then (is [13]

_R
Iyp (5t)

Brec = (6)
where Ig (sy,) is the rate of the capacity achieving code on an AWGN channel with SNR equal to sy,. The secret
key rate model with a rate R code with threshold sy, is

AI = R — Iz (sp), (7

where I (sg,) is the bound on the information leaked to Eve with SNR equal to sy, and the WER is zero. By the
definition of the threshold, the code operates at a zero error rate and consequently R < Ixg (sy,) follows from the
channel coding theory and so SBpgc < 1.

In contrast, for any finite length code, the error rate is bounded away from zero. Instead, the performance of
finite-length error correction codes can be determined via simulation to find the error rate curves (BER and
WER) for a particular code as the SNR is varied. Since the error rate decreases as the SNR is increased, the SNR
value at which a given code will be operated, s,p, will depend on the WER that can be tolerated by the application.
Thus the rate R of the error correction code we can employ on a given channel will depend on the WER we allow.

For example, the rate 0.02 code in [13] has a theoretical threshold (found using density evolution) of
sty = 0.02865. Consequently,

R 0.02
Brec = = = 0.981, 8)
Lus (s, = 0.02865)  0.02038

and the secret key rate model with SNR's = 0.02865 is
Al = 0.02 — Iz (s = 0.02865). 9

In practice, alength 2°° rate 0.02 code operating atan SNR of s = 0.029 hasa WER of 1/3 [13]. Applying
equation (3), this gives
R 0.02

= = = 0.97. (10)
Frec I (sop = 0.029)  0.02062

The secret key rate model for this code operating ata WER of 1 /3 with SNRs = 0.029is
Al = 2/3(0.02 — Ig(s = 0.029)). (11)

If we take the practice of allowing non-zero WERs to the extreme, it is possible to significantly increase the
rate R we can operate at a given SNR, s to above I55 (s), or equivalently, to operate at a S above 1. For example,
figure 1 shows the finite length performance of a rate 0.02 code with degree-distribution from [13] when the
code length is 10° bits and a maximum of 5, 000 decoder iterations are allowed. By allowing a WER 0f0.9999,
one can operate with rate 0.02 at an SNR 0f 0.0258 and thus

R =0.02 0.02

- - — 1.09. 12
Prxc Iup(sop = 0.0258)  0.018374 (12)

The secret key rate model for this code operating ata WER 0f 0.9999 with SNR s = 0.0258 is
AT = 0.00001(0.02 — I (0.0258)). (13)

For the same code rate, R, increasing the WER has allowed us to reduce s and thus reduce I (s). Consequently,
the current secret key rate model informs us that by increasing the WER we are able to increase the range of s for
which the same rate R code can operate.

Also shown in figure 1 is the Shannon capacity result for rate 0.02 codes and we can see that the ME-LDPC
codeisin fact operating at an SNR below the Shannon channel capacity which is why (3 can be calculated as
greater than 1. Of course this code is not outperforming the Shannon channel capacity, rather the comparison is
not valid. Coding schemes with a non-zero error rate are not bound by the same capacity formula as schemes
with a zero error rate. Itis well known that the capacity of the AWGN channel varies as the BER is allowed to

3
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Figure 1. BER (blue solid curve) and WER (blue dashed curve) for alength 10° rate 0.02, ME-LDPC code with degree distribution
from [13] with a maximum of 5000 decoder iterations. Here R is the code rate and s is the channel SNR. Also shown is the zero-error
channel capacity for this code rate (solid black curve) and the non-zero error channel capacity for this code rate (dashed black curve).

increase [21]. Ifthe BER is below 10~ * the effect is insignificant [21], however, above this, the SNR required to
decode at the given BER reduces significantly if a non-zero error rate is allowed. Also shown in figure 1 is the
non-zero error-rate capacity. Indeed, if we consider that we are allowed to operate at error rates as high as we
like, the results in [21] tell us that by operating close to the non-zero-error-rate capacity we can obtain a very
large increase in SNR over the zero-error-rate capacity and thus obtaina 3 > 1. Figure 2 shows G results we
have obtained in practice for the code from figure 1 as the WER is varied.

In this section we have demonstrated that fixed-rate forward error correction codes operated at a non-zero
WER can operate at lower SNR than ideal codes operating at a zero WER, thus returning a 3 above unity.
Alternatively, if the SNR s fixed, operating the codes at higher WERSs increases the code rate R that can be used
thereby increasing the likelihood that we can obtain a positive (R — Ig) term in the secret key model. In the
following section we demonstrate that this has important consequences for the validity of the key rate model, as
currently defined.

Codes with 3 greater than unity applied to unity-gain classical teleporter quantum
channels

We have demonstrated that is it possible to operate at a code rate above that of an ideal code by using, fixed-rate
forward error correction codes operating at sufficiently high WERs. We will now describe a problem that arises
with the secret key model in equation (2) when considering codes operating at a non-zero WER.

In quantum information theory, it has been shown that when a quantum channel is replaced with a classical
teleporter [22], no entanglement can be transmitted through such a channel [18].

4
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Figure 3. The Brequired to achieve a positive secret key rate for a unity-gain classical teleporter quantum channel for various Gaussian
CVQKD protocol configurations: direct reconciliation (blue) and reverse reconciliation (red); Squeezed states and homodyne
detection (solid line); coherent states and homodyne detection (dotted line); coherent states and heterodyne detection (dotted—dashed
line); squeezed states and heterodyne detection (dashed line). 3is plotted versus Alice’s transmitted state variance (V).

As a consequence, in the context of quantum key distribution, no secret key can be established through such
a quantum channel [23]. Such a channel would be equivalent to an intercept-and-resend attack.

A Gaussian quantum channel is completely described by the channel transmission and the channel excess
noise [9]. In the case where a quantum channel is replaced by a classical teleporter operating at unitary gain [22],
the quantum channel parameters are described by a transmission T' = 1 and a (relative input) excess noise
ofe = 2.

From equation (2), we can see that the secret key model is positive when

I
B> I—E (14)
AB

thisis equivalentto R > Ig from the previous section. We can therefore calculate the S required to achieve a
positive rate in the secret key model.

Figure 3 shows the value of Brequired to achieve a positive secret key for the following CVQKD protocols:
coherent or squeezed state sources; homodyne or heterodyne detection; and direct and reverse reconciliation
protocols (for details see [24]). In figure 3, we have assumed collective attacks, asymptotic key lengths, and ideal
detection efficiency. An example of the equations describing the channel capacity (Iy) and Eve’s maximum
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accessible information (Ig) are detailed in appendix A. Figure 3 plots the required 3 verses Alice’s transmitted
state variance (V = Vj + 1), which is the only free parameter and is normalized to the quantum noise limit.

Figure 3 shows that (s only slightly greater than unity are required to achieve a positive key rate for a number
of Gaussian CVQKD protocols operating over a unity-gain classical teleporter quantum channel. In the previous
section we demonstrated that the secret key rate model equation (1) can lead to greater than unity 3. This is in
addition to recent advances in Gaussian to binary mapping protocols which have demonstrated high efficiencies
atlow-SNR ratios (for example see [19]). Finally, we note that greater Ggc values could be obtained by operating
poorer FEC codes, poorer in the sense of a slower drop off in error rate with increasing SNR above capacity, as
these codes can also have a slower increase in error rate with decreasing SNR below capacity.

A discussion on the secret key rate model

In the previous section we demonstrated that the secret key rate models given by equations (2) and (5) give
incorrect results when employing fixed-rate forward error correction and operating over a range of high WERs.
Itislogical to reason that the secret key rate models may then be incorrect for all non-zero WERs. And since
applications of fixed-rate ME-LDPC codes are operated at quite high WERs, it is logical to conclude that the
secret key model is incorrect when such codes are used in the the error reconciliation procedure [10-15].

In the following we discuss how the current secret key rate model may be incorrect.

A CVQKD post-selection perspective
Here we make the observation that the act of choosing which codewords to keep or discard based on their
decoding performance is equivalent to a form of post-selection. In a general CVQKD post-selection protocol,
Alice and Bob discard a subset of their data in-order to gain an information advantage over Eve. Likewise, in an
error reconciliation process, Alice and Bob ‘post-select’ the transmitted words that decoded to correct
codewords and discard those that did not.

A secret key rate model has been proposed in the context of the CVQKD post-selection protocol [25]. The
secret key rate model for a general protocol with post-selection is [16]

Alps = fBlap — Ig, (15)

where fis the fraction of post-selected data. This secret key rate model is not known to be tight and can be treated
a pessimistic lower bound [16]. In the forward error correction context, the selected data is the set of codewords
that have been decoded to a valid codeword and so a failure rate of p; resultsin the fraction f = 1 — p;, ofthe
transmitted codewords being post selected, which gives a post selection key rate of

Al = (1 — Pfail)ﬁlAB — I (16)

An interpretation of this model is that all of Eve’s information is retained and distilled into remaining key bits
after error correction in the case of the finite failure probability of the forward error correction system.

We consider the performance of ME-LDPC codes as the reconciliation step in a CVQKD system as described
in [13, figure 5] using both the traditional secret key model equation (2) and the post-selection secret key model
equation (16).

Figure 4 shows the secret key models (equations (2) and (16)) assuming collective attacks and employing
reverse reconciliation, Gaussian modulated coherent states and homodyne detection. Both models utilize six
ME-LDPC codes in the reconciliation procedure with performance data points (R, s, WER, (3) as reported in
[13] and choose the value of signal variance, 1 < V < 100 corresponding to the given SNR, s. In short, we have
simply applied the same six data points from [13] to both equations (2) and (16) using the same CVQKD
parametersin[13].

Figure 4 shows the impact of a high-WER on both the secret key rate and operational range of the secret key
model equation (16) where a high WER impacts both the secret key rate and operational range of the protocol.
This suggests that it may be better to operate the FEC codes at a much lower WER to maximize performance.

To examine this further, figure 5 shows the effect on the key rate calculation for a set of ME-LDPC codes
when we jointly optimized over SNR, WER and code rate. The CVQKD system is the same as described above for
figure 4. We consider ME-LDPC codes with length 10° and rates 0.5, 0.1, 0.05, 0.02, and 0.005 with degree
distributions as in [13]. For simplicity, we have assumed zero loss in efficiency due to Gaussian to binary
mapping, have ignored finite length effects in all cases and have not placed any limitation on Vj. To obtain the
values for SNR and WER for each code we simulated their performance on the BILAWGN channel over a range
of SNRs and WERs (see appendix B for more detail on the optimization of the parameters).

Figure 5 emphasizes the problem with the secret key model equation (2). For high transmission losses, the
optimized key rate corresponds to a high-WER with Fabove 1. This corresponds to a better key rate than a
theoretically optimal code (5 = 1, WER = 0). In contrast, figure 5 shows the secret key model equation (16).

6
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Figure 4. Secret key models assuming collective attacks and employing ME-LDPC codes in the reconciliation procedure. The CVQKD
protocol assumes reverse reconciliation, Gaussian modulated coherent states and homodyne detection. Same CVQKD parameters as
[13]: V4 € {1, 100} modulation variance; ¢ = 0.01 relative input channel excess noise; 7 = 0.6 homodyne efficiency; 1) = 0.01
detector electronic noise; WER = 1/3. Solid blue: key rate model equation (2), dashed red: key rate model equation (16). From right
to left the ME-LDPC code parameters (R, s, WER, [3), are[13] (0.005, 0.00725, 0.33, 0.959), (0.01, 0.0145, 0.33, 0.966),

(0.02, 0.029, 0.33, 0.969), (0.05, 0.075, 0.33, 0.958), (0.1, 0.0.161, 0.33, 0.931) and (0.5, 1.097, 0.33, 0.936). There is no dashed
red curve shown for the (0.005, 0.00725, 0.33, 0.959) code as the key rate equation equation (16) returns zero key bits for this code.

Key bits per coded bit
3 3
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Figure 5. Secret key models assuming collective attacks and employing ME-LDPC codes in the reconciliation procedure. Same
CVQKD parameters as figure 4. The key rate models have been optimized over all (R, s, WER ,3) points for the six ME-LDPC codes.
The ME-LDPC codes with length 10° bits and rates 0.5, 0.1, 0.05, 0.02, 0.01, and 0.005 are constructed randomly with degree
distributions as given in [13]. The dash—dot black curve gives the key rate for a theoretically optimal code (8 = 1, WER = 0). The
solid blue curve gives the key rate calculated traditionally via equation (2) while the dashed red curve gives the key rate calculated via
equation (16). See appendix B for more information on the data used to generate these curves.

The secret key rate for this model is optimized at significantly lower WERs with codes operating at lower 3
values. We emphasize that the secret key model equation (16) is a conservative model of the secret key rate.

Operating at low word error rates
Increasing the WER allows us to increase the code rate R above I thereby giving a positive
Blag — Ig = R — Iy,

term even when Iyg < Ig. The multiplicative correction term (1 — WER) simply scales down the key rate leaving
it positive.
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Figure 6. Secret key models assuming collective attacks and employing ME-LDPC codes in the reconciliation procedure. Same
CVQKD parameters as figure 4. The key rate models have been optimized over all (R, s, WER ,3) points such that WER < 0.05 for
the six ME-LDPC codes. The ME-LDPC codes with length 100 000 bits and rates 0.5, 0.1, 0.05, 0.02, 0.01, and 0.005 are constructed
randomly with degree distributions as given in [13]. The dash—dot black curve gives the key rate for a theoretically optimal code

(8 = 1, WER = 0). The solid red curve gives the key rate calculated traditionally via equation (2).

Aswe showed in figure 1, the error rate permitted has a significant effect on the code rate that can be achieved
ifitis allowed to be large. Of interest would be the operation of the forward error correction codes at error rates
low enough so that the difference between the two cases is negligible. For ME-LDPC codes this means operating
each code at alower SNR or equivalently operating a much lower rate code at the same SNR. As an example,
figure 6 shows the key rate we can obtain by using the same codes as the previous examples but limiting their
operation to SNRs where the WER is below 0.05. Despite still allowing a quite high WER, a significant key rate
loss is observed. This indicates that the high WER allowed previously played an important role in reporting good
key rates.

While it may be possible, through good code design, to improve the code WER performance of ME-LDPC
codes to some extent, for fixed rate codes there will always be a trade-off between operating at a SNR that returns
agood efficiency and operating at an SNR that returns a low word error rate. Nevertheless, there are alternative
forward error correction strategies that do not use fixed-rate forward error correction codes. Instead we can
employ so-called rateless Raptor codes that adjust the code rate in real time so as to always decode to a valid
codeword, returning codes with both low word error rates and high efficiencies.

Raptor codes are graph based codes formed from the concatenation of a high rate LDPC code with a Luby
transform (LT) code. LT codes [26] have very simple encoding and decoding processes and can approach the
capacity of binary erasure channels with an unknown erasure rate. The encoding and decoding of Raptor codes
are linear in terms of the message length; thus practical for applications with large data transmission. Raptor
codes were studied for AWGN channels in [27], where a systematic framework was proposed to find the optimal
degree distribution across a range of SNRs. The design of very low rate Raptor codes was studied in [28]. Using
Raptor codes, a potentially limitless number of coded symbols can be generated, allowing the receiver to decode
the message once a sufficient number of parity bits have been received; thus always decoding to a valid codeword.

It has been shown [29] that low-rate Raptor codes can achieve higher efficiencies in comparison with the
fixed rate ME-LDPC codes in the entire SNR range and do so at very low WERs. When applied to the
reconciliation step of CVQKD, Raptor codes can significantly improve the key rate [29]. For example, figure 7
shows the key rate of the same CV-QKD system as considered in figure 4 applying the Raptor codes from [27, 29]
(see appendix C for more detail). For the Raptor codes the two models, equations (2) and (16), return the same
key-rate.

A new model
A full solution to this problem is non-trivial because the model involves finite-size effects (i.e. imperfect error
correction) and asymptotic quantities. Such a solution would require a model of the number of bits revealed
during the reconciliation procedure based on the particular code used, and how this quantity behaves in the
asymptotic limit.

Protocols with a complete security proof in the finite-size regimes exist, for instance [30]. Such proofs for
reconciliation using forward error correction will require a model of the number of bits leaked during the
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Figure 7. Secret key models assuming collective attacks and employing for Raptor and ME-LDPC codes in the reconciliation
procedure. Same CVQKD parameters as figure 4. For both ME-LDPC and Raptor codes, the secret key rate model has been optimized
over the parameters (R, s, WER, [3). The ME-LDPC codes with codeword length n = 10° bits and rates 0.5, 0.1,0.05,0.02, 0.01, and
0.005 are constructed randomly with degree distributions as given in [13]. The raptor codes with message length k = 10 are
constructed randomly with degree distributions as given in appendix C. The dash—dot black curve gives the key rate for a theoretically
optimal code (3 = 1, WER = 0). Solid green curve: the key rate model for Raptor codes via equation (16). Dashed red curve: key rate
model for ME-LDPC codes via equation (16).

forward error correction reconciliation procedure as a function of the WER, and any uncertainty in it, as well as
the codeword length and measurement errors.

Conclusion

The maximum operation range of CVQKD systems has shown to be improved by employing high-efficiency
forward error correction codes such as ME-LDPC codes. In the current literature, CVQKD protocols with fixed-
rate forward error correction codes typically use a modified secret key model equation (2) that includes the
WER term.

In this paper, we have demonstrated that this secret key model is incorrect. We demonstrated this in two
steps. Firstly, we showed that previously used ME-LDPC codes for a range of high word error rates, exhibited
efficiencies greater than unity. Secondly, we showed that assuming that code efficiencies could be greater than
unity, then using the secret key model equation (2), it was possible to achieve a positive secret key over an
entanglement breaking channel, which is equivalent to an intercept and resend attack—an impossible scenario.
We concluded that if the secret key model is incorrect for a range of high WERS, it is also possibly incorrect for
any non-zero WERs.

We subsequently discussed the secret key model from the perspective of CVQKD post-selection protocols.
Ina CVQKD post-selection protocol, Alice and Bob discard a subset of their data in-order to gain an
information advantage over Eve. Similarly, in an error reconciliation process, Alice and Bob ‘post-select’ the
code words that decoded to valid codewords and discard codewords that they were unable to decode. This secret
key rate model is not known to be tight but can be treated as a lower bound [16]. We showed that using the post
selection key rate model reduces the previously reported operational range of such CVQKD systems employing
fixed length forward error correction codes. We also showed that using the current secret key rate model, but
restricting the codes to operate at lower WERs, can also reduce the previously reported operational range of
CVQKD systems employing fixed length forward error correction codes. However, we did show that it is
possible to employ an alternative forward error correction coding solution in the form of Raptor codes, which
provide high efficiencies while operating at very low WERSs.

A full solution to this problem would require a model of the number of bits revealed during the
reconciliation procedure based on the particular code used, and how this quantity behaves in the asymptotic
limit. Until such a model is known we would suggest that key rates obtained using the current model while
operating at high WERs may not be accurate.
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Appendix A

In this section we detail Alice and Bob’s channel capacity as well as Eve’s information for the Gaussian protocol
with reverse reconciliation and employing coherent states and homodyne detection. Here we assume collective
attacks and asymptotic key lengths. The free parameters in these equations are the following: Vvariance of the
transmitted state; T quantum channel with transmission; € relative input channel excess noise; 7 homodyne
efficiency; v, detector electronic noise. Alice and Bob’s channel capacity (Iyg) and Eve’s information (Ig) are
described by the following compact set of equations [31].

I = C = %101‘%2(%)) (17)
V=Vy+1, (18)

Xtot = Xiine + Xnom/ T> (19)

Xine = 1/T — 1+ ¢, (20)

Xhom = (1 = 1+ ve) /1 (@3]
=G[(Nh—1D/2] + Gl(N\ — 1)/2], (22)
=Gl — /2] = G[(As — D /2], (23)
Glx] = (x + Dlog,(x + 1) — xlog,(x), (24)

A= \/%(A + VA? — 4B), (25)

A = \/%(A — JA? — 4B), (26)
)\32\/%(C+\/C2—4D), (27)
)\4:\/%(C— JC*— 4D), (28)

A=V21 = 2T) + 2T + T*(V + Xjne) (29)
B=T*V Xjne + 1% (30)
A VB + T(V .
C= Xhom + \/— + ( + the) , (31)
T(V + Xline)
\4 B

D= \/E + \/_Xhom . (32)

T(V + Xline)

The complete set of Gaussian protocol configurations, includes: squeezed states and homodyne detection;
coherent states and heterodyne detection and squeezed states and heterodyne detection. These protocols are
described in detail elsewhere [24] in the case of ideal homodyne detector efficiency and ideal forward error
correction codes.

AppendixB

In this section we provide details for optimizing the secret key rate models shown in figure 5. We consider ME-
LDPC codes with length 100 000 and rates 0.5, 0.1, 0.05, 0.02, and 0.005 with degree distributions as in [13]. The
parity-check matrices were constructed randomly subject to the degree distribution constraints. Figure B1
shows the performance of the ME-LDPC codes with rates 0.005, 0.01, 0.02, 0.05, 0.1 as the channel SNR is
varied.
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Figure B1. WER versus SNR for the considered ME-LDPC codes from left to right are the ME-LDPC codes with rates 0.005, 0.01, 0.02,
0.05,0.1.
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Figure B2. Optimized code rate versus distance for key rate equations equation (2) (solid blue) compared to key rate equations
equation (16) (dashed red curve).

We then jointly optimized over SNR, WER and rate to maximize the secret key rate for each transmission
distance. The final secret key rate is the maximum key rate over all codes. In figures B2—B5, the solid red curves
give the parameters which optimize the key rate calculated via equation (2) while the dashed red curves give the
parameters which optimize the key rate calculated via equation (16).

Appendix C

We consider two Raptor codes in this paper. The first code, from [28], has degree distribution

Q(x) = 0.0035x + 0.3538x2 + 0.2337x> + 0.0737x*
+ 0.0755x° + 0.0262x° + 0.0608x7 + 0.0493x!!
+ 0.0255x'2 4 0.0002x%' + 0.0454x2°
+ 0.0072x°7 4 0.0180x8 + 0.0272x300, (33)
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Figure B3. Optimized SNR versus distance for key rate equations equation (2) (solid blue) compared to key rate equations
equation (16) (dashed red curve).
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Figure B4. Optimized WER versus distance for key rate equations equation (2) (solid blue) compared to key rate equations
equation (16) (dashed red curve).
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Figure B5. Optimized (3 versus distance for key rate equations equation (2) (solid blue) compared to key rate equations equation (16)
(dashed red curve).
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Figure C1. S versus SNR for the two raptor codes. The solid curve gives 3 values obtained for the code from [28] with degree
distribution (33) and message length k = 100 000. The dashed curve gives the efficiency of the code from from [27] with degree
distribution (34) and message length k = 38 000.

The second Raptor code, from [27], has degree distribution

Q(x) = 0.0146x! + 0.3766x> + 0.0677x> + 0.2946x*

+ 0.1291x% + 0.0060x'? 4 0.0341x** + 0.0228x*
+ 0.0073x** + 0.0472x2%°, (34)
See [27, 28] for details on encoding and decoding algorithms for these codes. Figure C1 shows the simulated
efficiency for these codes on an AWGN channel as the SNR is varied.
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